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Abstract

This paper summarizes the mathematical surface equations which are useful in two-phase flows and single-phase react-
ing flows. The connection between the interfacial area concentration transport equation for two-phase flows and the flame
surface density transport equation for turbulent reacting flows is established. Several analytical examples are given to clar-
ify the physical significance of the different quantities involved in the different transport equations. An introduction to the
mathematical treatment of anisotropic interfaces is also given. This theory is illustrated on two different numerical exam-
ples: a single inclusion in a simple shear and a single inclusion in an uni-axial elongation.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper deals with surface related transport equations used in two-phase flow and reacting single-phase
flow studies. A particular feature of two-phase flow is the presence of interfaces separating the two-phases (e.g.
a gas and a liquid). These interfaces can be considered as two-dimensional (2D) surfaces embedded in the
three-dimensional (3D) Euclidian space. In the classical approach of the two-fluid model (e.g. Ishii, 1975; Ishii
and Hibiki, 2005), one set of balance equations of mass, momentum and energy is written for each phase.
Nevertheless, the two phases do not evolve independently since they are strongly coupled through the
mass, momentum and energy exchanges between them. Most of these exchanges are proportional to the
available contact area between the two phases, per unit volume of the mixture. This interfacial area per unit
volume, often called the interfacial area concentration, is therefore a fundamental quantity in two-phase flow
studies.

Another example where surface equations can be of importance is the one of reacting single-phase flows
(Candel and Poinsot, 1990; Trouvé and Poinsot, 1994). In certain gas combustion problems, the flame is
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quite similar to a surface separating fresh gases on one side, from burnt products on the other side. Under
these conditions, one can define a flame surface density which is analogous to the interfacial area concen-
tration in two-phase flow studies. We will see that these two quantities obey quite similar transport equa-
tions, giving the possibility to take benefit from studies in one research area to make progress in the other
one.

In the context of two-phase flow studies, two different approaches can be employed. For the particular case
of particulate suspensions (flows where one of the two phases is finely dispersed in the other), the interfacial
area concentration transport equation can be deduced as a particular statistical moment of a population bal-
ance equation, by making an analogy with the kinetic theory of gases. This first approach is restricted to the
dispersed flow cases (bubbly or droplet flows), and we will not discuss of it in details, because this approach
has been largely discussed in previous papers (Guido-Lavalle and Clausse, 1991; Kalkach-Navarro et al., 1994;
Guido-Lavalle et al., 1994; Kocamustafaogullari and Ishii, 1995; Millies and Mewes, 1995; Millies et al., 1996;
Wu et al., 1998; Hibiki and Ishii, 2000a,b; Lhuillier et al., 2000; Yao and Morel, 2004; Ishii and Hibiki, 2005).
A second approach, which is valid for all interfaces configurations, i.e. for all two-phase flow regimes, is also
possible. This second approach is based on the study of the evolution of pieces of surfaces embedded in the
flow field, independently of what these surfaces are. Physically, they can represent interfacial surfaces, or flame
surfaces. Geometrically, they can be open or closed. The link between these two approaches in the particular
case of dispersed flows has been shown by Lhuillier et al. (2000).

This paper is organized as follows. In Section 2, the definitions of the different interfacial area concentra-
tions introduced by different authors are synthesized and the link between them is clearly demonstrated. In
Section 3, the different forms of the so-called Leibniz rule (or Reynolds transport theorem) for a surface
are recalled. The transport equation for the global instantaneous (i.e. defined on a fixed volume) surface area
is obtained as a particular case of this general transport theorem, as was demonstrated previously by Candel
and Poinsot (1990) for flame surfaces and by Delhaye (2001) for interfacial surfaces. The corresponding local
(i.e. point-wise) transport equations are given in Section 4, and compared to the previous works in the
literature (Marle, 1982; Drew, 1990). In Section 5, we show the mathematical connection between the inter-
facial area transport equation and the flame surface density transport equation, often called the R-equation.
The last Section 6 is devoted to the analysis of anisotropic (non-spherical) interfaces. A full tensorial treatment
of the surface equations is introduced and compared to the existing previous theories in the literature. Several
analytical examples are given along this paper when it has been possible to obtain them. For the more com-
plicated case of anisotropic interfaces, numerical results are also presented in Section 6 on two simple cases.
2. On the different definitions of the interfacial area concentration for two-phase flows

2.1. Local instantaneous interfacial area concentration

We assume that a gas–liquid interface is a 2D surface embedded in the 3D Euclidean space. It has a zero
Lebesgue measure and therefore it cannot be defined locally and instantaneously by usual mathematical func-
tions. Instead, the generalized functions, or distributions, will be used.

They are two representations of a surface in space (Aris, 1962). Let x = (x,y,z) be the position vector in the
3D Euclidean space and t the time. In the first representation, the surface can be defined by the following geo-
metrical equation:
F ðx; tÞ ¼ 0 ð1Þ
The second representation is given by:
x ¼ xðu1; u2; tÞ ð2Þ
where u1 and u2 are the surface coordinates. The velocity of the surface point (u1,u2) is defined by:
w � ox
ot

����
u1;u2

ð3Þ
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Let F be positive in phase 1 and negative in phase 2. The phase characteristic function, or phase indicator func-

tion, is a binary function which can be defined by:
v1ðx; tÞ ¼ 1� v2ðx; tÞ ¼ Y ðF ðx; tÞÞ ð4Þ
where Y(x) is the Heaviside distribution. The relation (4) shows that the characteristic function vk is equal to 1
for a point x located in phase k at time t, and to 0 for a point located in the other phase. The two unit vectors
normal to the interface and pointing outward phase k are given by Aris (1962):
n2 ¼ �n1 ¼ rF =jrF j ð5Þ
As F is identically zero for all points located on the interface, its convective time derivative at the velocity w is nil:
oF
ot
þ w:rF ¼ 0 ð6Þ
Eqs. (5) and (6) show that any two different velocity fields (3) (corresponding to two different choices of the
surface coordinates) which have the same normal velocity component w.n give rise to the same surface motion
(Drew and Passman, 1999). Therefore, the normal velocity component is the only one to be related unambig-
uously to the surface motion. This normal velocity component is sometimes called the normal displacement

speed of the interface (Delhaye, 1981) and is given by:
w:n2 ¼ �w:n1 ¼ �
oF =ot
rFj j ð7Þ
From the definition (4), one can also deduce:
rv1 ¼ �rv2 ¼ dðF ÞrF

ov1

ot
¼ � ov2

ot
¼ dðF Þ oF

ot

ð8Þ
where d(x) is the Dirac distribution. We recall that the Dirac distribution is the derivative of the Heaviside
distribution (Schwartz, 1966). From Eqs. (6) and (8) one can deduce:
ovk

ot
þ w:rvk ¼ 0 k ¼ 1; 2 ð9Þ
which is called the topological equation for phase k.
From the relations (5) and (8)1, one can also deduce:
�nk:rvk ¼ dðF ÞjrF j � dI () rvk ¼ �nkdI ð10Þ
where dI is a Dirac distribution having the different interfaces as a support. Such a distribution is used by
Marle (1982), Kataoka et al. (1984, 1986); Kataoka (1986), Drew (1990), Soria and de Lasa (1991), Lhuillier
et al. (2000) and Lhuillier (2003, 2004a,b). It is called a local instantaneous interfacial area concentration by
Kataoka (1986) and by Kataoka et al. (1984, 1986). We see that the surface can be equivalently defined by
the fields dI, n and w.n.

2.2. Global instantaneous interfacial area concentration

Let V(x) be a fixed volume in space centered on a given point x. By fixed, we mean that neither the size of
the volume nor its shape depends on the particular point x. The global instantaneous interfacial area concen-
tration is defined over the volume V as:
SV ðx; tÞ �
1

V

Z
V

dI dv ¼ 1

V

Z
S�V

da ¼ Aðx; tÞ
V

ð11Þ
where S is the interfacial surface within the volume V at time t and A(x,t) is its area. Therefore, the global
instantaneous interfacial area concentration SV can be seen as the volume average of the local instantaneous
one, given by dI, or equivalently as the ratio of the surface area inside the volume V divided by its magnitude.
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It is clear from the definitions (10) and (11) that dI and SV have the physical dimension of the inverse of a
length.

2.3. Local, or time-averaged, interfacial area concentration

Ishii (1975) and Delhaye (1976) introduced the following local interfacial area concentration defined over a
time interval [t � T/2, t + T/2]:
STðx; tÞ �
1

T

X
j

1

jw:njj
ð12Þ
where the sum applies on the different interfaces passing through the point x during the time interval [t � T/2,
t + T/2]. It is not useful to precise the sense of the normal vector n because of the absolute value in the denom-
inator of (12). The link between the local time-averaged interfacial area concentration defined by (12) and the
local instantaneous one defined by (10) is demonstrated in details by Kataoka et al. (1984, 1986) and by Riou
(2003). More simply, we can introduce the following Dirac distribution in the time domain (Lhuillier et al.,
2000):
dI ¼
X

j

dðt � tjÞ
jw:njj

) ST ¼
1

T

Z
½T �

dI dt ð13Þ
It can be noted that ST has also the physical dimension of the inverse of a length.
2.4. Link between the global instantaneous and the local interfacial area concentrations

The volume V being fixed in time, the order of integration does not matter. It is equivalent to take first the
volume average of dI over V followed by its time-average over [T], or to take first its time-average followed by
the volume average. As a consequence, we obtain:
1

V

Z
V

1

T

Z
½T �

dI dt dv ¼ 1

V

Z
V

ST dv ¼ 1

T

Z
½T �

1

V

Z
V

dI dvdt ¼ 1

T

Z
½T �

SV dt ð14Þ
This relation has been first demonstrated by Delhaye (1976) by means of integral theorems. This double aver-
age of dI is a possible approximation for its statistical average aI ¼ hdIi. Multiplying the two sides of Eq. (14)
by VT and using Eqs. (11) and (12), we obtain:
Z

V

X
j

1

jw:njj
dv ¼

Z
½T �

Adt ð15Þ
In what follows, we illustrate the physical significance of (15) on three simple examples.
2.4.1. A fixed bubble growing linearly in time

We first consider the case of a spherical bubble whose center is located at the origin of a Cartesian reference
frame. The radius of the bubble grows constantly with a radial velocity W, therefore Eq. (1) for this bubble
reads:
F ðx; tÞ ¼ x2 þ y2 þ z2 � RðtÞ2 ¼ 0 ð16Þ
with R(t) = Wt being the instantaneous radius of the bubble. At the end of the time interval [0,T], the bubble
radius is R(T) = WT therefore the volume swept by the bubble surface during [0,T] is a spherical volume with
radius R(T). We consider this spherical volume as the control volume V. The instantaneous bubble surface
A(t) being equal to 4pR(t)2=4pW2t2, a simple integration gives immediately:
Z T

0

AðtÞdt ¼ 4p
3

W 2T 3 ð17Þ
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Now we consider the LHS (left-hand-side) of (15). It is easy to verify, applying (7)–(16), that w.n = W with n

being directed towards the exterior of the bubble. Then, we obtain immediately:
Z
V

X
j

1

jw:njj
dv ¼

Z
V

1

jw:nj dv ¼ 1

W

Z
V

dv ¼ 4p
3

W 2T 3 ð18Þ
in accordance with (17).
2.4.2. A plane surface moving in a sector

We consider a plane surface moving normally to itself in a sector (Fig. 1). The normal velocity of this sur-
face is equal to U and the aperture angle is equal to a. At a given time t, the distance covered by the surface
from the origin of the sector is equal to Ut. At the end of the time interval [0,T], this distance is equal to UT

and we consider the volume swept by the plane surface inside the sector as being the control volume V.
The problem is 2D in the plane of the figure, therefore it can be seen that the ‘‘area’’ of the surface instan-

taneously contained inside the volume V is A(t) = Ut tan(a)*1 = Ut tan(a). The integration gives immediately:
Z T

0

AðtÞdt ¼ U tan a
T 2

2
ð19Þ
The normal velocity of the surface being equal to U, we have immediately:
Z
V

X
j

1

jw:njj
dv ¼

Z
V

1

jw:nj dv ¼ 1

U

Z
V

dv ¼ U tan a
T 2

2
ð20Þ
in accordance with (19).
2.4.3. A moving bubble entering in a cubic volume

Now we consider a slightly more difficult case of a spherical moving bubble entering in a cubic box (Fig. 2).
The bubble velocity is aligned with the z direction of a Cartesian reference frame, the axes of this frame being
parallel to the sides of the box. At the initial time, the bubble is entirely outside of the box but the top of the
bubble is located at the inferior face of the box (Fig. 2a). At a given instant t, the height of the bubble which is
inside the box h(t) is equal to Ut (Fig. 2b), and the time T corresponds to the first time when the bubble is
entirely inside the box (Fig. 2c). We therefore have 2R = UT where U and R are the velocity and radius of
the bubble, respectively.

Eq. (1) for the bubble is given by:
F ðx; tÞ ¼ x2 þ y2 þ ðz� UtÞ2 � R2 ¼ 0 ð21Þ
At a given time t smaller than T, the surface area of the spherical cap inside the volume V of the box is given by
A(t) = 2pRh(t) = 2pRUt. Its integration gives:
Ut

UT

U 

α

Fig. 1. A plane surface moving in a sector.
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Fig. 2. A spherical bubble entering in a cubic box.
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Z T

0

AðtÞdt ¼ 2pR2T ð22Þ
The calculation of the LHS of (15) is slightly more difficult because one must consider separately three differ-
ent zones inside the cubic volume V, corresponding to the points swept two times by the interface of the bubble
during [T], the points swept a single time and the points that do not see the bubble at all, which give zero con-
tribution to the LHS of (15). The calculation is done in the Appendix. At the end we obtain:
Z

V

X
j

1

jw:njj
dv ¼ 2pR2T ð23Þ
in accordance with (22).

3. On the different forms of the Leibniz rule (or Reynolds transport theorem) for a surface

3.1. An open surface evolving freely in space

We first consider an open surface evolving freely in space as the one illustrated in Fig. 3.
The boundary of the open surface S is a closed curve C. We denote by n the unit vector normal to the sur-

face and by m the unit vector normal to the bounding curve C, located in the plane tangent to the surface.
We can decompose the surface velocity vector w into its normal and tangential components:
w ¼ ðw:nÞnþ wt () wt ¼ ðI � nnÞ:w ð24Þ
where I is the identity tensor in 3D space and I � nn is a surface projection operator which can be thought of
as the identity tensor in the 2D surface (Nadim, 1996). From its definition (24), it is clear that wt is the pro-
jection of the vector w in the plane tangent to the surface. We can calculate the surface divergence of the vector
w:
S 

C 

n 

n 

ν

Fig. 3. An open surface evolving freely in space.
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rs:w ¼ rs:wt þ ðw:nÞrs:n ¼ rs:wt þ ðw:nÞr:n ð25Þ
where it should be noted that the surface divergence of the complete vector w and the one of its projection wt

differ of a quantity equal to the product of the normal displacement velocity defined by (7) and the surface
divergence of n. In the particular case of the normal vector n, it should be noted that its surface divergence
rs.n coincides with the usual spatial divergence $.n evaluated on the surface (Nadim, 1996) because we have:
rs:n ¼ ðI � nnÞ : rn ¼ I : rn ¼ r:n ð26Þ
since �nn : rn ¼ �ninjni;j ¼ �njðnini=2Þ;j ¼ 0 because ni ni ¼ 1.
The Leibniz rule, or Reynolds transport theorem, for a surface is given by Aris (1962):
d

dt

Z
S

f da ¼
Z

S

of
ot
þ f ðw:nÞðr:nÞ

� �
daþ

Z
C

f wt:mdC ð27Þ
The relation (27) is a particular case of a more general theorem (Nadim, 1996):
d

dt

Z
S

W:n da ¼
Z

S

dW
dt
þWr:w�rTw:W

� �
:nda ð28Þ
where W is a tensor field of any rank. Taking the particular case of the vector W ¼ nf , the Leibniz rule (27) is
retrieved.

Making f = 1 in Eq. (27) and considering the particular case of a closed surface, the following simple result
is obtained:
d

dt

Z
S

da ¼
Z

S

ðw:nÞðr:nÞda ð29Þ
3.2. A surface evolving within a fixed volume

The extension of the theorem (27) when one considers only the portion of a surface S(t) instanta-
neously contained in a fixed volume V (Fig. 4) is not trivial. This extension has been done by Gurtin
et al. (1989).

We denote by S(t) the portion of the surface instantaneously contained inside the fixed volume V and C(t)
the intersection curve between the two surfaces S(t) and oV. On each point of the curve C(t), we can define
simultaneously the unit vector n normal to the surface S(t) and the unit vector N normal to the boundary sur-
face oV, outwardly directed. Gurtin et al. (1989) show that a portion of the derivative given by (27) must bal-
ance the outflow of f due to the transport of portions of S(t) across oV. The extended theorem reads:
δV 

V 

S(t)

C(t)

n 

N 

Fig. 4. A portion of surface included in a fixed volume V.
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d

dt

Z
SðtÞ

f da ¼
Z

SðtÞ
ð _f þ f ðw:nÞðr:nÞÞda�

Z
CðtÞ

f ðw:nÞ n:Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðn:NÞ2

q dC ð30Þ
where _f is called the normal time derivative of f by the authors. It can be noted that the term involving wt in
(27) is absent in (30) (the two terms on the bounding curve C of (27) and (30) do not coincide and they have
not the same significance) because Gurtin et al. (1989) assumed that wt ¼ 0. When the velocity w is not normal
to the surface, they give an extended version of the theorem (30) (see their remark 3):
d

dt

Z
SðtÞ

f da ¼
Z

SðtÞ
ð _f þ frs:wtÞda�

Z
CðtÞ

f
w:Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðn:NÞ2
q dC ð31Þ
but they do not give the demonstration of (31). Later, Jaric (1992) extended the result (30) to a portion of a
moving surface inside a nonfixed volume and retrieved the result (30) for a fixed volume. Making f = 1 into
Eq. (30) gives:
d

dt

Z
SðtÞ

da ¼
Z

SðtÞ
ðw:nÞðr:nÞda�

Z
CðtÞ
ðw:nÞ n:Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðn:NÞ2
q dC ð32Þ
where the two surface integrals concern all surfaces inside V while the line integral lies over the intersections of
the surfaces with the boundary oV.
3.3. Application to the determination of the surface area

When the global instantaneous interfacial area concentration SV is desired, it is equivalent to determine the
surface area A contained into the volume V since the two are related by (11). The time derivative of A is simply
given by (32):
dA
dt
¼
Z

SðtÞ
ðw:nÞðr:nÞda�

Z
CðtÞ
ðw:nÞ n:Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðn:NÞ2
q dC ð33Þ
The relation (33) was postulated by Lhuillier et al. (2000) and was demonstrated by Morel et al. (1999) into a
slightly different (but equivalent) form. The only difference between (33) and Eq. (27) in our previous paper
(Morel et al., 1999) is that the expression of the first term in the RHS (right-hand-side) of (33) was not given,
this term being replaced by a general source term c expressed per unit volume and per unit time. The difference
between (33) and Eq. (2) of Lhuillier et al. (2000) is that these authors added a volumetric source term c in the
RHS of (33) which was attributed to the coalescence and break-up phenomena. In fact, it can be shown that
Eq. (33) does not contain the coalescence and break-up phenomena, and that these phenomena should be
added, as it was demonstrated by Lance (1986) on the case of dispersed flows and Junqua-Moullet (2003)
on the case of stratified flows.

Candel and Poinsot (1990) start from Eq. (28) to derive their balance equation for the flame surface area in
a single-phase reacting flow. Making W = n into (28) gives:
dA
dt
¼
Z

SðtÞ
ð�nn : rwþr:wÞda ¼

Z
SðtÞ
rs:wda ð34Þ
If we make wt = 0, as in the theorem (30), Eq. (34) becomes, by using (25):
dA
dt
¼
Z

S

ðw:nÞðr:nÞda ð35Þ
and (29) is retrieved. The comparison of Eqs. (35) and (33) shows that the outflow term is missing in the equa-
tion derived by Candel and Poinsot (1990). This is a direct consequence of the fact that they start from the
theorem (28), which is valid for a surface evolving freely in space, and not from the theorem (30) more adapted
to the study of a portion of a surface included in a fixed volume V.
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3.4. Illustration on several examples

3.4.1. A moving bubble entering in a cubic volume

In this paragraph, we reconsider the example of a moving bubble entering in a cubic box illustrated in Fig. 2
in order to verify the relation (33) on a simple analytical case. The geometrical equation defining the bubble
surface is always given by (21) and we recall that the portion of the surface instantaneously contained into the
box is given by A(t) = 2pRh(t) = 2pRUt (Section 2.4.3), therefore we obtain:
dA
dt
¼ 2pRU ð36Þ
The two terms in the RHS of (33) are calculated in Appendix (Eqs. (A.5) and (A.6)), we obtain:
Z
SðtÞ
r:nðw:nÞda ¼ 2pRU sin2 a ð37Þ

�
Z

CðtÞ
ðw:nÞ n:Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðn:NÞ2
q dC ¼ 2pRU cos2 a ð38Þ
Their sum is therefore equal to 2pRU, in accordance to (36).
3.4.2. A plane surface moving in a sector

Now we verify Eq. (33) on the case illustrated in Fig. 1 (see Section 2.4.2). We recall that the problem is 2D
and that the surface area instantaneously contained into the volume V of the sector is given by A(t) =
Ut tan(a), therefore:
dA
dt
¼ U tan a ð39Þ
As we have a plane surface in this case, the curvature term is nil and the outflow term is given by:
�
Z

CðtÞ
ðw:nÞ n:Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðn:NÞ2
q dC ¼ U

sin a
cos a

¼ U tan a ð40Þ
where n is assumed to be upwardly directed, therefore n.N is equal to zero on the left side of the volume V,
where N is horizontal, and equal to �sin a on the right side (Fig. 1).
4. Local transport equations for the void fraction and the interfacial area concentration

4.1. Local instantaneous transport equations

The first local instantaneous transport equation is the so-called topological equation for the phase indicator
function vk given by Eq. (9). The second local instantaneous transport equation is the one for dI which can be
derived directly from (9) and (10) (Lance, 1986; Drew, 1990; Junqua-Moullet, 2003) or from Eq. (33) which
can be rewritten as:
d

dt

Z
V

dI dv ¼
Z

V
ðw:nÞðr:nÞdI dv�

Z
oV
ðw:nÞðn:NÞdI da ð41Þ
Using Green’s theorem on the last term of (41) and assuming that the volume V becomes infinitely small, Eq.
(41) gives:
odI

ot
þr:½dIðw:nÞn� ¼ dIðw:nÞr:n ð42Þ
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where it is not useful to indicate the sense of n since it appears twice in each term of (42). It can be demon-
strated that (Marle, 1982):
r:ðdIwtÞ ¼ dIrs:wt ð43Þ
Adding (43) to (42) and taking (24) and (25) into account yields:
odI

ot
þr:½dIw� ¼ dIrs:w ð44Þ
Splitting $.(dIw) as w:rdI þ dIr:w and taking into account that rs:w ¼ ðI � nnÞ : rw, and then subtracting
dIr:w from the two members of (44) yields:
odI

ot
þ w:rdI ¼ �dInn : rw ð45Þ
an equation found by Lhuillier (2003).
They are many equivalent equations to represent local instantaneous transport of surfaces and (42), (44)

and (45) are only three examples. The preference is to be given to (44) which looks like a traditional transport
equation and bears many resemblances with the macroscopic transport equation proposed a long time ago by
Ishii (1975).
4.2. Averaged transport equations

Realistic physical situations often develop very complicated interfaces, therefore a statistical treatment is
necessary. Drew (1990) (see also Drew and Passman, 1999) use the ensemble average over a set of equivalent
processes. Denoting this ensemble average by h i, the average of the topological Eq. (9), taking (10) into
account, gives:
oak

ot
¼ �hw:rvki ¼ þhw:nkdIi ð46Þ
where ak ¼ hvki is the statistical volumetric fraction of presence of phase k, often called the ‘‘void fraction’’.
One can also average Eq. (42) which gives:
oaI

ot
þr:hdIðw:nÞni ¼ hdIðw:nÞr:ni ð47Þ
where aI ¼ hdIi is the statistically averaged interfacial area concentration. Drew (1990) introduced two differ-
ent averaged velocities: a scalar one and a vector one. The scalar averaged velocity is the one suggested by (46),
it is defined by:
W k �
hw:nkdIi
hdIi

¼ hw:nkdIi
aI

ð48Þ
Hence (46) can be rewritten:
oak

ot
¼ aIW k ð49Þ
Drew (1990) called (48) the ‘‘average interfacial normal velocity’’. We can see that it corresponds to the speed
at which phase k expands itself by ‘eating’ the other phase. The vector averaged velocity suggested by Eq. (47)
is defined by:
W I �
hdIðw:nÞni
hdIi

¼ hdIðw:nÞni
aI

ð50Þ
Denoting $.n by H (H is here the total curvature, which must not be confused with the mean curvature: the
total curvature is twice the mean curvature), and defining the averaged total curvature by:
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H � hdIr:ni
hdIi

¼ hdIHi
aI

ð51Þ
Drew arrived at the following form for the interfacial area concentration transport equation:
oaI

ot
þr:ðaIW IÞ ¼ H

oak

ot
þ hdIðw:nÞðH � HÞi|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

aIUS

ð52Þ
where Us denotes a source term per unit area which is attributed to the coalescence and break-up phenomena,
according to Drew (1990). A comparison of (52) with the equation firmly established for spherical bubbles
(Wu et al., 1998; Hibiki and Ishii, 2000a; Yao and Morel, 2004):
oaI

ot
þr:ðaIV GÞ ¼

2

3

aI

a
oa
ot
þr:ðaV GÞ

� �
þ 12p

a
aI

� �2
on
ot
þr:ðnV GÞ

� �
ð53Þ
shows that it is a little bit more complicated, nevertheless a common term appears in the RHS of (52) and (53)
since H ¼ 2=R ¼ 2aI=3a for spherical bubbles with R ¼ 3a=aI being the Sauter mean radius of the bubbles and
a corresponds to the gas phase. The quantity n in (53) is the bubble number concentration.

Now, we can also take the average of Eq. (44), rather than (42), to obtain:
oaI

ot
þr:hdIwi ¼ hdIrs:wi ð54Þ
which suggests us to introduce the following transport velocity:
V I �
hdIwi
hdIi

¼ hdIwi
aI

ð55Þ
It can be noted that WI and VI are equal as soon as wt = 0 can be assumed. If this is not the case, a particular
choice for wt must be made and the two transport velocities WI and VI are different.

The general transport Eq. (54) and the transport Eq. (53) derived for bubbly flows are different. There-
fore, we should verify their compatibility in the particular case of a bubbly flow. Their left-hand sides are
identical as soon as the averaged velocity defined by (55) is replaced by the mean gas velocity VG which is
the center of mass velocity of the bubble swarm. It is simply assumed that for a dispersed bubbly flow, the
two velocities transporting the interfacial area and the void fraction are close together, therefore VI can be
simply replaced by VG. The link between the two right-hand-sides of (53) and (54) is more difficult. Lhuillier
(2004b) derived such a link in an approximated manner, under a similar assumption that the interface veloc-
ity w is close to the velocity of the phase having the minor fraction of presence. An equation similar to (54)
was also obtained by Séro-Guillaume and Rimbert (2005) using a method based on volume-averaging. Two
different closures for the macroscopic velocity VI based on thermodynamic arguments are also proposed by
these authors.
4.3. Link with the time averaging operator

In Section 2.3, we have defined a time-averaged interfacial area concentration given by Eq. (12). When the
flow is steady, one can assume that the statistical average can be advantageously replaced by a time average
(ergodicity assumption). If we make this assumption (aI is equivalent to ST for a steady flow), we obtain for
the different time-averaged quantities:
STW k ¼
oak

ot
¼ 1

T

X
j

w:nk

jw:nkj
ð56Þ
which is a well-known relation when using a time averaging operator (Ishii, 1975; Delhaye, 1981).
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STW I ¼
1

T

X
j

w:nk

jw:nkj
nk ð57Þ

STV I ¼
1

T

X
j

w
jw:nkj

ð58Þ

ST H ¼ 1

T

X
j

H
w:nkj j ð59Þ
with ST defined by (12).

4.4. Link with the volume-averaging operator

In Section 2.2, we have defined a volume-averaged interfacial area concentration given by Eq. (11). When
the flow is spatially homogeneous, one can assume that the statistical average can be advantageously replaced
by a volume average (ergodicity assumption). If we make this assumption (aI is equivalent to SV for a homo-
geneous flow), we obtain for the different volume-averaged quantities:
SV W k ¼
oRk

ot
¼ 1

V

Z
S�V

w:nk da ð60Þ
where Rk is the spatial volumetric fraction of phase k. The relation (60) is a well-known relation when using a
volume-averaging operator (Kolev, 2002). We have also:
SV W I ¼
1

V

Z
S�V

ðw:nkÞnk da ð61Þ

SV V I ¼
1

V

Z
S�V

wda ð62Þ

SV H ¼ 1

V

Z
S�V

H da ð63Þ
with SV defined by Eq. (11).

4.5. Illustration on a fixed bubble growing linearly in time

We reconsider the example of Section 2.4.1. The geometrical equation defining the surface motion is given
by Eq. (16). This motion is purely radial hence w:nG ¼ W ¼ cte. If we assume that the statistical average can
be replaced by a time-average over a time interval [0,T], we obtain hdIi ¼ ST defined by (12). As w.n is equal to
the constant radial velocity W, we obtain:
ST ¼
1

T

X
j

1

jw:njj
¼ 1

WT
ð64Þ
hence oST=ot ¼ 0. The three averaged velocities WG, WI and VI defined by Eqs. (56)–(58) are given by
W G ¼ W and WI = VI = WnG since wt = 0. Expressing the normal nG as in Eq. (A.4), we obtain immediately:
r:ðSTW IÞ ¼ r:ðSTV IÞ ¼ STWr:nG ¼ 2
STW
RðtÞ ð65Þ
and we have also:
hdIðw:nÞr:ni ¼ W hdIHi ¼ WSTH ð66Þ
which is identical to (65) since H ¼ 2=R.
Now we assume that the statistical average can be replaced by a spatial average over a volume V. We obtain

hdIi ¼ SV defined by (11). Therefore we have:
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SV ¼
4pR2

V
) oSV

ot
¼ 8pRW

V
ð67Þ
where we assume that the bubble surface is entirely contained within the volume V. We also have:
SV W I ¼ SV V I ¼
1

V

Z
S�V

W nda ¼ W
V

Z
S�V

nda ¼ 0 ð68Þ
since S is a closed surface and, for the curvature term:
hdIðw:nÞr:ni ¼ W
2

R
SV ¼ W

2

R
4pR2

V
¼ 8pRW

V
ð69Þ
which is identical to (67).
It is important to remark that, if the transport Eq. (52) (without the last term since the mean curvature does

not fluctuate) is verified using a time-average or a volume average, the equilibrium between the different terms
does not occur in the same manner. When using a time averaging operator, we obtain:
r:ðSTW IÞ ¼ hdIðw:nÞr:ni ¼ 2
STW

R
and oST=ot ¼ 0 ð70Þ
When using a volume-averaging operator, we obtain:
oSV

ot
¼ hdIðw:nÞr:ni ¼

8pRW
V

and SV W I ¼ 0 ð71Þ
Hence, we see that the RHS of the transport equation is balanced by the divergence of the convective flux if we
assume a steady situation and is balanced by the transient term if we assume a spatially homogeneous situa-
tion. Here the situation studied is not steady and not homogeneous, but the transient term is erased by the time
averaging in the first situation and the convection term is erased by the spatial averaging in the second one.
This example shows the importance of the choice of the averaging operator which is more adapted to the phys-
ical situation: steady or unsteady, homogeneous or not.

5. Transport equation for the flame surface density in a turbulent reacting flow

In single-phase reacting flows, combustion takes place on preferential zones where the different reactants
are mixed together. These zones can be volumetric ones (flame pockets) or nearly surface ones (thin sheets
in comparison to the other scales of the flow). In this last situation, called the flamelet regime, one can define
a flame surface embedded in the 3D space of the flow. The mean reaction rate can be estimated as the product
of the consumption rate per unit surface by a flame surface density. Infinitely fast, reduced or complex chem-
istry models are included in the modeling of the consumption rate per unit flame area. The flame surface den-
sity is the available flame area per unit volume and is analogous to the interfacial area concentration in two-
phase flow.

The flame surface density, often denoted by R, obeys a transport equation called the R-equation (Candel
and Poinsot, 1990; Boudier, 1992; Trouvé and Poinsot, 1994; Veynante et al., 1996; Van Kalmthout and
Veynante, 1998). In what follows, we derive the exact R-equation from the equations presented in Section
4. The derivation is made in the general case of a turbulent flow.

In the flamelet regime, the flame front reduces to a thin sheet which can be approximated as a 2D surface
embedded in the 3D space occupied by the flow. The 2D surface has a velocity field w which can be decom-
posed into the sum of the flow velocity and the flame propagation velocity with respect to the flow (Candel and
Poinsot, 1990; Trouvé and Poinsot, 1994; Peters, 1999):
w ¼ vþ Sn ð72Þ
where v is the flow velocity and S is the flame propagation speed. We must discuss on the physical significance
of Eq. (72). The flame front is assimilated to a surface separating the fresh gas side labeled as 1 from the burnt
gas side labeled as 2. If we assume the continuity of the tangential component of the fluid velocity through the
flame surface ðvt1 ¼ vt2Þ, the tangential component of the velocity w can be chosen equal to the common fluid
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tangential velocity ðwt ¼ vt1 ¼ vt2Þ. As a consequence, the two-fluid velocities only differ in their normal com-
ponent: w ¼ v1 þ ðw� v1Þ:n1n1 and w ¼ v2 þ ðw� v2Þ:n2n2. Denoting S1 ¼ ðw� v1Þ:n1 and S2 ¼ ðw� v2Þ:n2,
we obtain w = v1 + S1n1 and w = v2 + S2n2 which are two relations like (72) but where S, v and n depends
on the side considered: fresh or burnt gases. The key is the mass jump condition across the frame front which
imposes that the mass flux is conserved because the flame surface itself is assumed to have no mass. Denoting
the mass flux density due to the reaction rate by _m and denoting n = n1 = �n2, we can write:
_m ¼ q1ðw� v1Þ:n ¼ q2ðw� v2Þ:n ¼ q1S1 ¼ �q2S2 ð73Þ

This relation shows that _m is intrinsic to the flame (it does not depend on the side) therefore we prefer use _m
instead of S1;2. Using (73), the relation (72) can be rewritten as:
w ¼ v1 þ
_m
q1

n ¼ v2 þ
_m
q2

n ð74Þ
The starting point of the derivation of the R-equation is Eq. (44) which can be rewritten as:
odI

ot
þr:½dIw� ¼ dIðI � nnÞ : rw ð75Þ
Substituting (74) into (75) and taking the ensemble average yields:
oR
ot
þr:hdIvki þ r: dI

_m
qk

n
	 


¼ hdIðI � nnÞ : rvki þ dI

_m
qk
rs:n

	 

ð76Þ
where R ¼ hdIi is the flame surface density. We can also define dI-weighted averaged quantities by the follow-
ing relation:
hwis �
hdIwi
hdIi

¼ hdIwi
R

ð77Þ
The flow being turbulent, one may classically decompose the flow velocity vk into a mean and a fluctuating
parts (Reynolds decomposition):
vk ¼ V k þ v0k ð78Þ

Using (77) and (78), Eq. (76) becomes:
oR
ot
þ r:ðRV kÞ|fflfflfflfflffl{zfflfflfflfflffl}

meantransport

þ r:ðRhv0kisÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
turbulenttransport

þr: R
_m
qk

n
	 


s

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

flamepropagation

¼Rðr:V k�hnnis :rV kÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
AT

þRhr:v0k�nn:rv0kis|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
aT

þR
_m
qk
r:n

	 

s|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

curvature

ð79Þ

Eq. (79) is Eq. (3) of Veynante et al. (1996). The LHS of (79) contains three convection terms: convection by
the mean velocity Vk, convection by the fluctuating velocity hv0kis and convection by the mean propagation
velocity _m

qk
n

D E
s
. The RHS of (79) contains two terms due to the surface divergence of the flow velocity field

(see Eq. (76)). These terms represent the stretch of the flame surface density R due to the velocity divergence
acting in the tangent plane. Due to the Reynolds decomposition, two different stretch terms appear: one due to
the mean velocity field (term ATRÞ and one due to the fluctuating velocity field (term aTRÞ. The last term com-
bines the propagation speed _m

qk
and the total curvature $.n of the surface. Typical closure relations for Eq. (79)

are proposed by Veynante et al. (1996) and Van Kalmthout and Veynante (1998). It should be noted that, if
the fresh gas density is approximately equal to the burnt gas one (q1 ¼ q2Þ, the gas velocity v and the prop-
agation speed S becomes continuous through the flame surface and the relation (72) is retrieved.

We also note that the stretch due to the mean velocity field (term ATRÞ involves the orientation tensor hnnis
which is the surface average of the dyadic product of the normal vector n by itself. Veynante et al. (1996) pro-
posed algebraic closure relations to express this tensor in the case of experimentally measured flames. In the
following section, transport equations for quantities like hnnis are given for the case of two-phase liquid–liquid
dispersions. An equation quite similar to Eq. (79) has been postulated by Vallet et al. (2001) for the modeling
of the atomization of a liquid jet into a droplet spray.
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6. Introduction to the theory of anisotropic interfaces

In the preceding sections, the ensemble-averaged interfacial area concentration has been denoted by aI and
the volume-averaged one by SV . In this section, we summarize results obtained in the context of volume-aver-
aging (e.g. Wetzel and Tucker, 1999) and others obtained in the context of ensemble-averaging (e.g. Lhuillier,
2003). At the end, we use the volume-averaging in order to numerically calculate averaged quantities like the
interfacial area concentration SV . So we advertise the reader that, in order to avoid a change of notation two
times in this section, the interfacial area concentration will be denoted by SV throughout this section.
6.1. Area tensors and their transport equations

In situations where gas–liquid interfaces become anisotropic (non-spherical), the interfacial area concentra-
tion is not sufficient to describe them accurately, because this is a scalar quantity. The anisotropic surfaces exhibit
a tensorial character which can be described by introducing the following area tensors (Wetzel and Tucker, 1999):
Ae
1

V

Z
S�V

nnda() Aije
1

V

Z
S�V

ninj da ð80Þ
for the second-order tensor,
Ae
1

V

Z
S�V

nnnnda() Aijkle
1

V

Z
S�V

ninjnknl da ð81Þ
for the fourth order tensor and so on . . . The area tensors (80) and (81) are defined onto a control volume V, as
in the paper of Wetzel and Tucker (1999). When all the interfaces within this control volume are closed
surfaces, only the even-order area tensors are useful, the odd-order area tensors being zero-valued. In what
follows, we do not make the distinction between a given tensor like A or its typical component Aij. Due to
the fact that the normal vector n is a unit vector, the following interesting properties of area tensors can be
noted:
Aii ¼ trðAÞ ¼ 1

V

Z
S�V

da ¼ A
V
¼ SV

Aijkk ¼
1

V

Z
S�V

ninj da ¼ Aij

ð82Þ
In particular, the trace of the second-order area tensor is equal to the global (volume-averaged) surface area
concentration SV and one can normalize an area tensor of any order by dividing it by SV . The normalization of
the second-order area tensor gives the orientation tensor hnnis introduced in Section 5. One can also introduce
the deviator of the area tensor:
qij �
1

V

Z
S�V

ninj �
1

3
dij

� �
da ¼ Aij �

1

3
SV dij ð83Þ
where dij is the Kronecker symbol. The quantity (83) is called the interface anisotropy tensor or interface tensor.
The transport equation for the second-order area tensor can be deduced from Eq. (44) and the evolution

equation for the normal vector n (Wetzel and Tucker, 1999; Lhuillier, 2003):
dni

dt
¼ oni

ot
þ w:rni ¼ �Ljinj þ Ljknjnkni ð84Þ
where Lij is a short notation for the surface velocity gradient owi=oxj. Combining Eqs. (44) and (84), then aver-
aging, one obtains:
oAij

ot
þr:hwninjdIi ¼ hdIðninjnknl þ ninjdkl � ninkdjl � njnkdilÞLkli ð85Þ
which was obtained by Lhuillier (2004a).
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On the other hand, by averaging Eq. (44) or taking the trace of Eq. (85), we obtain:
oSV

ot
þr:hdIwi ¼ hdIðI � nnÞ : Li ð86Þ
which is equivalent to (54). Combining Eqs. (85) and (86), the transport equation for the interface anisotropy
tensor (83) is obtained:
oqij

ot
þ w:r ninj �

dij

3

� �
dI

� �	 

¼ dI ninj þ

dij

3

� �
nknl � ninkdjl � njnkdil

� �
Lkl

	 

ð87Þ
6.2. Some closures in particular cases

In the case of liquid–liquid dispersions, interesting results have been obtained by Doi and Ohta (1991) and
later by Lhuillier (2003). The original paper of Doi and Ohta (1991) was concerned with two incompressible
fluids having the same viscosity and density, mixed with equal volume fractions. The assumptions of equal
viscosities and equal concentrations have been suppressed in the work of Lhuillier (2003).

Lhuillier (2003) assumed that the velocity w of the interfaces is close to the translation velocity v of the dis-
persed phase, which itself is close to the average velocity V of the emulsion, because the two liquids have
approximately the same density. In the RHS of (86), the velocity gradient Lij can be replaced by the micro-
scopic deformation tensor dij ¼ 1=2ðLij þ LjiÞ because of the symmetry of the tensor product ninj. This micro-
scopic deformation tensor is assumed to be close to the average deformation tensor hdd

iji of the dispersed
phase, therefore Eq. (86) becomes:
oSV

ot
þ V :rSV ¼ �q : hddi ð88Þ
where Aij has been replaced by qij because hdd
iii ¼ 0. Under the same simplifying assumptions, Eq. (87)

becomes:
oqij

ot
þV :rqijþqikhxd

kjiþqjkhxd
kii¼ dI ninj�

dij

3

� �
nknl

	 

hdd

kliþ
2

3
dijqklhdd

kli�qikhdd
kji�qjkhdd

kii�
2

3
SV hdd

iji

ð89Þ
where dd
ij and xd

ij are the symmetric and anti-symmetric parts of the tensor Lij. Eq. (88) shows that the evolu-
tion of SV is stopped whenever the tensor qij vanishes (isotropic interfaces). The author said that (88) is not
able to reproduce coalescence of droplets and proposed to add a term like – rað1� aÞG0S2

V in the RHS of (88):
oSV

ot
þ V :rSV ¼ �q : hddi � rað1� aÞG0S2

V ð90Þ
where r is the surface tension and a is the volumetric fraction of one of the two phases. The dependence of the
coalescence term in a(1 � a) allows to reduce the coalescence intensity as the flow becomes dilute (a tends to 0
or to 1). The factor G0 is a function of the volumetric fractions and the dynamic viscosities of the two phases.
It is given by:
G0 ¼
a2

1g2 þ a2
2g1

3=2g1g2 þ ða1g2 þ a2g1Þ
2

ð91Þ
If the macroscopic deformation tensor hdd
iji and the macroscopic rotation rate tensor hxd

iji are known (as well
as a and V), the system of the two Eqs. (89) and (90) is not completely closed because one need to express the
fourth order tensor Aijkl ¼ hdIninjnknli. The simpler closure for this fourth order tensor is the one proposed by
Doi and Ohta (1991). They proposed the following decoupling approximation:
Aijkl ¼
1

SV
AijAkl ð92Þ
Substituting Eq. (92) into (89), one obtains:
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oqij

ot
þ V :rqij ¼

1

SV
jklqklqij þ

2

3
dijqkljkl � qikjkj � qjkjki �

1

3
SV ðjij þ jjiÞ ð93Þ
where jij ¼ hdd
iji þ hxd

iji is the macroscopic velocity gradient. Doi and Ohta (1991) added two relaxation terms
in the RHS of Eqs. (88) and (93) to take into account the surface tension effects. The surface tension has
mainly two effects: it makes the interfaces more isotropic (shape relaxation towards spherical shape) and it
decreases the surface area concentration by shape relaxation and coalescence of the droplets. At the end,
the system proposed by Doi and Ohta (1991) reads:
oqij

ot
¼ 1

SV
jklqklqij

þ 2

3
dijqkljkl � qikjkj � qjkjki �

1

3
SV ðjij þ jjiÞ � kSV qij

oSV

ot
¼ �q : j� klS2

V

ð94Þ
where the coefficients k and l are given by:
k ¼ ðc1 þ c2Þr=g0

l ¼ c1=ðc1 þ c2Þ
ð95Þ
where g0 is the dynamic viscosity common to the two phases and c1 and c2 are positive numbers which can be
functions of the volumetric fraction a. It should be remarked that the convection terms V :rSV and V :rqij are
not included in the model (94) of Doi and Ohta (1991).

Later Lhuillier (2004a) proposed the following linear closure relation for the fourth order tensor (see also
Hand, 1962):
Aijkl ¼ �
SV

35
ðdijdkl þ dikdjl þ dildjkÞ þ

1

7
ðdijAkl þ dikAjl þ dilAjk þ djkAil þ djlAik þ dklAijÞ ð96Þ
This relation has been established for the three-dimensional situations. In the case of two-dimensional situa-
tions, the numerical coefficients must be changed in order to guarantee that the trace of the tensor qij remains
zero (Lhuillier, private communication):
Aijkl ¼ �
SV

24
ðdijdkl þ dikdjl þ dildjkÞ þ

1

6
ðdijAkl þ dikAjl þ dilAjk þ djkAil þ djlAik þ dklAijÞ ð97Þ
The relation (97) is linear, unlike the relation (92) which is quadratic. Therefore, it is expected that (97) will be
correct for small deformations only and (92) will be more adapted for large deformations. This will be verified
later (Figs. 11 and 12).

6.3. Numerical tests of Doi–Ohta’s model in simple 2D configuration

In order to test the model proposed by Doi and Ohta (1991), and in particular the decoupling approxima-
tion (92), simple numerical tests can be done. We restrict ourselves to 2D situations and to a single inclusion.
Here we study the deformations of an initially circular interface submitted to different velocity fields.

6.3.1. The system of equations for 2D situations

In 2D situations, the surface area concentration is replaced by the ratio of the length of the curve L divided
by the total area Atot of the two-phase mixture:
SV ¼
L

Atot

ð98Þ
If an area A is enclosed into the curve C, the volumetric fraction of the dispersed phase can be defined by the
ratio:
a ¼ A
Atot

ð99Þ
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and the Sauter mean diameter dS characterizing the single inclusion can be defined as:
dS ¼
4a
SV
¼ 4A

L
ð100Þ
where the factor 4 is taken because we are in a 2D situation (cylindrical inclusion). For a circular inclusion, the
diameter dS is equal to the circle diameter.

The definition of the interface anisotropy tensor (83) becomes, in 2D situations:
qij ¼ Aij �
1

2
SV dij ð101Þ
As a consequence, Eq. (87) becomes:
oqij

ot
þ w:r ninj �

dij

2

� �
dI

� �	 

¼ dI ninj þ

dij

2

� �
nknl � ninkdjl � njnkdil

� �
Lkl

	 

ð102Þ
Making the same simplifying assumptions as in Section 6.2, Eq. (89) becomes in 2D situations:
oqij

ot
þ V :rqij þ qikhxd

kji þ qjkhxd
kii ¼ dI ninj �

dij

2

� �
nknl

	 

hdd

kli þ dijqklhdd
kli � qikhdd

kji � qjkhdd
kii � SV hdd

iji

ð103Þ
and finally, Eq. (93) becomes:
oqij

ot
þ V :rqij ¼

1

SV
jklqklqij þ dijqkljkl � qikjkj � qjkjki �

1

2
SV ðjij þ jjiÞ ð104Þ
6.3.2. The numerical procedure for 2D situations

The numerical procedure consists in discretizing the closed curve in a set of N points (N � 1 segments) given
by ðxi,yiÞ in Cartesian coordinates. Knowing the positions at the previous time step ðxn

i ,yn
i Þ, one can calculate

the imposed velocity field ðun
i ,vn

i Þ ¼ ðuðxn
i ,yn

i Þ,vðxn
i ,yn

i ÞÞ and then integrate the velocity field to find the new posi-
tions of the discretization points:
xnþ1
i ¼ xn

i þ
Z tnþ1

tn
un

i dt ffi xn
i þ un

i dt

ynþ1
i ¼ yn

i þ
Z tnþ1

tn
vn

i dt ffi yn
i þ vn

i dt

ð105Þ
where dt ¼ tnþ1 � tn is the (constant) time step. Knowing the positions ðxnþ1
i ; ynþ1

i Þ at the current time step, one
can calculate the newest velocity field and so on. . . At each time step n, all the quantities characterizing the
inclusion can be calculated. The infinitesimal displacement along the curve is given by:
dxn
i ¼ xn

iþ1 � xn
i ; dyn

i ¼ yn
iþ1 � yn

i ð106Þ
and its length dsn
i is given by Pythagoras’s theorem:
dsn
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxn2

i þ dyn2

i

q
ð107Þ
Then, the two components of the normal vector can be calculated by:
nn
x;i ¼ �dyn

i =dsn
i ; nn

y;i ¼ dxn
i =dsn

i ð108Þ
From the local quantities (106)–(108), one can evaluate the following global quantities:
Ln ¼
Z

C

ds ¼
XN�1

i¼1

dsn
i ð109Þ
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for the length of the curve and:
An ¼
Z Z

A

da ¼ 1

2

Z Z
A

r:xda ¼ 1

2

Z
C

x:nds ¼ 1

2

XN�1

i¼1

ðxn
i nn

x;i þ yn
i nn

y;iÞdsn
i ¼

1

2

XN�1

i¼1

ðyn
i dxn

i � xn
i dyn

i Þ ð110Þ
for the enclosed area, where the Green theorem has been used. From (109) to (110), one can easily calculate
the quantities defined by (98)–(100).

The calculation of the area tensors is simply given by:
An
ijk... ¼

1

Atot

XN�1

m¼1

nn
i;mnn

j;mnn
k;m . . . dsn

m ð111Þ
and their normalized form by:
bAn
ijk... ¼

1

L

XN�1

m¼1

nn
i;mnn

j;mnn
k;m . . . dsn

m ð112Þ
Having the second-order area tensor by (111) and SV by (98), the interface anisotropy tensor qij can be calcu-
lated using its definition (101).

6.3.3. Simple shear

In the first numerical test, we impose a simple shear for the velocity gradient:
u ¼ jy; v ¼ 0 ð113Þ

The corresponding 3D case has been studied analytically by Doi and Ohta (1991). In a 2D situation with a
velocity field given by (113), it is easy to show that the system (88)–(104) degenerates in the following
manner:
dSV

dc
¼ �qxy

dqxy

dc
¼ 1

SV
q2

xy � qxx �
1

2
SV

dqxx

dc
¼ 1

SV
qxyqxx þ qxy

dqyy

dc
¼ 1

SV
qxyqyy � qxy

ð114Þ
with c ¼ jt being the non-dimensional time. In this first test, we assume that the initial radius of the inclusion is
equal to 1 (m), therefore giving an enclosed surface A equal to p (m2) in a squared area Atot ¼ 4 ðm2Þ. The void
fraction a defined by (99) is therefore equal to 0.785. We choose an arbitrary value of j ¼ 0:1ðs�1Þ and we
calculate 100 time steps with a time step value dt ¼ 0:1 s. The final time in the calculation is therefore equal
to t = 10 s and the final non-dimensional time is c = 1. The numerical curve has been discretized with 1000
points.

The deformed interface at the end of the calculation as well as the time evolution of the volume-averaged
quantities SV , dS and the components qij are presented in Fig. 5. The stretch of the interface by the shear veloc-
ity gradient (Fig. 5a) causes an increase in the surface area concentration SV (Fig. 5b). Accordingly, the Sauter
mean diameter of the inclusion decreases (Fig. 5c) and the three components of the anisotropy tensor separate
from zero (Fig. 5d). It can be seen that the trace of the anisotropy tensor given by qxx þ qyy is constantly equal
to zero, as expected by the definition of the anisotropy tensor. The velocity field (113) being divergence-free,
the area enclosed in the curve must be conserved, which can be verified by the invariance of the void fraction
during time, constantly equal to 0.785. Now we can evaluate each term of the model Eq. (114) from our
numerical simulation (Fig. 6). In particular, the two sides of each of these equations can be compared. It
can be seen that, except for the component qxy, all Eq. (114) are perfectly balanced.



Fig. 5. Sketch of the deformed interface at the end of the calculation and time evolution of the volume-averaged quantities SV , dS and qij

(simple shear).
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This discrepancy between the two sides of the qxy equation should be attributed to the decoupling approx-
imation (92), because the model Eq. (114) are based on this decoupling approximation, and our numerical
simulation is not. This is confirmed by the comparison of the fourth order tensor Aijkl and its approximated
Fig. 6. Comparison of the LHS and RHS of the model Eq. (114) together with the different contributions in their RHS (simple shear).
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value AijAkl=SV (Eq. (92)). The comparison of the four components Axxxx, Axxxy , Axxyy and Axyyy calculated from
the simulation with their approximated values A2

xx=SV , AxxAxy=SV . . . is illustrated in Fig. 7. It can be seen that
the components Axxxy and Axyyy are quite well predicted by (92) but that Axxxx and Axxyy are poorly predicted (as
well as Ayyyy not shown here).

6.3.4. Uni-axial elongation and rotation

In the second numerical test, the initially circular inclusion is submitted to the following velocity field:
Fig. 7.
shear).
u ¼ jxþ xy; v ¼ �xx� jy ð115Þ
The velocity field (115) is also divergence-free. It corresponds to the addition of an uni-axial elongation
ðu ¼ jx; v ¼ �jyÞ and a rigid body rotation characterized by an angular velocity xðu ¼ xy, v ¼ �xxÞ.
The velocity gradient tensor jij, the deformation rate tensor Dij and the rotation rate tensor Xij are given
by:
j ¼
j x

�x �j

� �
; D ¼

j 0

0 �j

� �
; X ¼

0 x

�x 0

� �
ð116Þ
It is easy to show that the system (88)–(104) degenerates into the following one:
dSV

dt
¼ jðqyy � qxxÞ

dqxy

dt
¼ 1

SV
jðqxx � qyyÞqxy þ xðqyy � qxxÞ

dqxx

dt
¼ 1

SV
jðqxx � qyyÞqxx þ jðqxx � qyyÞ � 2qxxjþ 2qxyx� SV j

dqyy

dt
¼ 1

SV
jðqxx � qyyÞqyy þ jðqxx � qyyÞ � 2qxyxþ 2qyyjþ SV j

ð117Þ
Test of the decoupling approximation (92) on the four components Axxxx, Axxxy , Axxyy and Axyyy of the fourth order area tensor (simple
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We submit the same initially circular interface to the velocity field given by (115) with the values
j ¼ x ¼ 0:1 s�1. The time simulated is equal to 30 s. The same quantities as before are illustrated in Figs.
8–10. It can be seen that, at the time t = 30 s, the interface is strongly deformed (Fig. 8a). Fig. 9 shows that
Eq. (117) for SV and qxy are rapidly balanced and that the two other equations for qxx and qyy are balanced
later. Similarly, Fig. 10 shows that the decoupling approximation gives quite good results for the two compo-
nents Axxxy and Axyyy as soon as the beginning of the deformation. The two other components Axxxx and Axxyy

tend more slowly to their approximated values and attain them at the end of the deformation. Therefore, it
can be said that the decoupling approximation (92) is better for strongly anisotropic interfaces.

We have also compared Lhuillier’s model (Lhuillier, 2004a) in his two-dimensional version (Eq. (97)) to the
decoupling approximation (92) proposed by Doi and Ohta on the case illustrated in Fig. 8 (elongation and
rotation). Substituting the closure relation (97) into Eq. (103) and applying it to the velocity field (115)
(together with the SV equation) gives the following set of modeled equations:
Fig. 8.
(elong
dSV

dt
¼ jðqyy � qxxÞ

dqxx

dt
¼ 2

3
jðqxx � qyyÞ �

3

4
SV jþ 2xqxy �

4

3
jqxx

dqyy

dt
¼ 2

3
jðqxx � qyyÞ þ

3

4
SV j� 2xqxy þ

4

3
jqyy

dqxy

dt
¼ xðqyy � qxxÞ ð118Þ
The equilibrium of the SV transport equation visible in Fig. 9a has not changed because the SV Eq. (118)1 does
not depend on the closure used for Aijkl and hence is the same as (117)1. The results of this comparison are
illustrated in Figs. 11 and 12. It can be seen that Lhuillier’s model is more efficient at the beginning of the
calculation, hence in the slight deformations case, unlike Doi and Ohta’s model which gives better results
Sketch of the deformed interface at the end of the calculation and time evolution of the volume-averaged quantities SV , dS and qij

ation and rotation).



Fig. 9. Comparison of the LHS and RHS of the model Eq. (117) (elongation and rotation).
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at the end of the calculation, hence when the deformations are large. The remaining challenge is to find an
interpolation between the two models (92) for big deformations and (97) for small deformations. This issue
is left for future work.
Fig. 10. Test of the decoupling approximation (92) on the four components Axxxx, Axxxy , Axxyy and Axyyy of the fourth order area tensor
(elongation and rotation).



Fig. 11. Comparison of Lhuillier’s model (97) to the model (92) on the elongation and rotation case. Comparison of the LHS and RHS of
the model Eq. (118) for the quantities qxx, qxy and qyy. Comparison of the measured and modeled quantity Axxxx.
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7. Conclusion

This paper deals with surface transport equations in two-phase and single-phase reacting flows. The
problem of the determination of the flame surface density in single-phase reacting flows is quite similar
to the determination of the interfacial area concentration in two-phase flows. We have summarized the the-
oretical foundations of these two problems, and shown the connection between them. The different defini-
tions of a volumetric surface area by spatial, temporal and ensemble averages have been recalled. The
different forms of the transport equation for such a quantity are derived and it should be remarked that
it is a consequence of the Leibniz rule, or Reynolds transport theorem, for a portion of a surface evolving
in a fixed volume. We have also derived the flame surface density transport equation in a turbulent reacting
flow from an equation previously derived for the interfaces in two-phase flows, showing the mathematical
connection between these two problems. As the interfacial area concentration is a scalar quantity, it cannot
deal with anisotropic interfaces which exhibit a tensorial character. The mathematical tools which are nec-
essary to study the anisotropic interfaces are presented in Section 6, and the example of the system closure
in the case of laminar incompressible liquid–liquid dispersions is given (Doi and Ohta, 1991; Lhuillier,
2004a). At the end, we have tested these two models on simple 2D numerical simulations of the deforma-
tion of a single inclusion in an imposed velocity field. The 2D version of the transport equations are
derived and their results are compared to the simulation results. Two different velocity fields are imposed:
a simple shear and a velocity field composed of an elongation and a rotation. This kind of simulations
gives a simple mean to test different approximations for the fourth order area tensor, which is the key issue



Fig. 12. Comparison of Lhuillier’s model (97) to the model (92) on the elongation and rotation case. Fourth order tensor components Axxxy

to Ayyyy .
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when using a system composed of the interfacial area transport equation and the anisotropy tensor trans-
port equation. We have found that the decoupling approximation (92) proposed by Doi and Ohta (1991)
works better when the interfacial anisotropy is important, unlike Lhuillier’s model which is better for small
anisotropy.
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Appendix

A moving bubble entering in a cubic volume.
In Section 2.4.3, we study the case of a moving bubble entering in a cubic volume (Fig. 2). The difficulty is

to calculate the LHS of Eq. (15). To do this, we must consider separately three different zones inside the cubic
volume V, corresponding to the points swept two times by the interface of the bubble during [T], the points
swept a single time and the points that do not see the bubble at all, which give zero contribution to the
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Fig. A. A bubble entering in a box (t = T).
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LHS of (15). We illustrate this in Fig. A which illustrates the position of the bubble with respect to the inferior
face of the box at the end of the process (t = T).

We use the cylindrical coordinates system (r,/,z), r being the horizontal distance to the symmetry axis
(Fig. A). Using Pythagoras’s theorem, it is easy to verify that the distances a and b indicated on the figure
are given by a ¼ R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2
p

and b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2
p

. A point in the box located at an altitude z smaller than a
has been swept by two interfaces during the time interval [0,T], the normal velocity of these two interfaces
being given by:
w:n ¼ �U
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p
ðA:1Þ
where the + sign corresponds to the top interface of the bubble, and the � sign corresponds to the bottom
interface. The result (A.1) is obtained by applying (7) to Eq. (21), taking into account that we are on the bub-
ble surface. A point located at an altitude z comprised between a and a + 2b only sees the first interface during
[T], the displacement velocity being given by (A.1) with the + sign. A point located at an altitude z greater than
a + 2b does not see any interface during [T] and therefore gives no contribution. At the end, the LHS of Eq.
(15) writes:
Z
V

X
j

1

jw:njj
dv¼

Z R

0

Z 2p

0

Z R�
ffiffiffiffiffiffiffiffiffi
R2�r2
p

0

2R

U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2� r2
p rdzd/drþ

Z R

0

Z 2p

0

Z Rþ
ffiffiffiffiffiffiffiffiffi
R2�r2
p

R�
ffiffiffiffiffiffiffiffiffi
R2�r2
p

R

U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2� r2
p rdzd/dr

ðA:2Þ

Each of the two integrals in the RHS of (A.2) gives 2pR3/U. Their sum is therefore equal to 4pR3/U which, by
virtue of the fact that 2R = UT, is also 2pR2T, the result given in (23).

Now we will calculate the two terms in the RHS of (33). The total curvature can be calculated by the diver-
gence of the normal vector n, which gives:
r:n ¼ 2

R
ðA:3Þ
where we have used the fact that the normal vector n has the following components:
nx ¼ x=R; ny ¼ y=R; nz ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðx2 þ y2Þ

q
=R ðA:4Þ
on the surface. The angle a being measured between the normal n onto the intersection curve C and the vertical
direction z, the portion of the surface which is included in the box at time t is limited by 0 < / < 2p and
0 < h < a where / and h are the surface coordinates (Fig. B).



z 

n 

α

r 

N 

Fig. B. Definition of the a angle.
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The curvature term in the RHS of (33) is therefore given by:
Z
SðtÞ
ðw:nÞr:nda ¼ 2

R

Z 2p

0

d/
Z a

0

U
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p
R2 sin hdh

¼ 4pU
Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R2ðsin2 h cos2 /þ sin2 h sin2 /Þ

q
sin hdh

¼ 4pUR
Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 h

p
sin hdh ¼ 2pUR sin2 a ðA:5Þ
For the outflow term, it should be noted that the intersection curve between S and oV is a circle and that the
unit vector N normal to oV is equal to – ez where ez is the unit vector in the vertical direction z (Fig. B). There-
fore n.N is equal to – nz and the outflow term is calculated as:
�
Z

CðtÞ
ðw:nÞ n:Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðn:NÞ2
q dC ¼

Z 2p

0

U
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p nzffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

z

p r d/ ¼ 2p
U
R
ðR2 � r2Þ ¼ 2pUR cos2 a ðA:6Þ
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Séro-Guillaume, O., Rimbert, N., 2005. On thermodynamic closures for two-phase flow with interfacial area concentration transport

equation. Int. J. Multiphase Flow 31, 897–920.
Soria, A., de Lasa, H.I., 1991. Averaged transport equations for multiphase systems with interfacial effects. Chem. Eng. Sci. 46, 2093–

2111.
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